

Towards a Sustainable Nuclear Energy System

Mark A. Williamson
Chemical Sciences and Engineering Division

October 20, 2014

Conceptual Advanced Fast Reactor Site Plan

- Close-coupling of reactor and fuel recycle facility at the reactor park allows for efficient fuel multi-recycle
 - Results in off-site transport of engineered waste forms not used fuel

Advanced Fast Reactor Systems

- Advanced fast reactor systems have unique features that impact choice of reprocessing technology
 - Metal fuel
 - High concentration of transuranic elements in fuel (e.g., 20 wt%)
 - Short cooling time to allow for in-vessel storage of used fuel prior to reprocessing
 - No extensive out-of-reactor used fuel storage system required
 - Eliminates large out-of-reactor inventory of transuranic elements
 - Sodium used for bonding metal fuel meat with cladding material for improved heat transfer
 - Reacts to form sodium chloride that is soluble in molten salt

Technology Development Objectives

Develop next-generation fuel cycle and waste management technologies that enable a sustainable fuel cycle

- Industrially practicable and economical
 - High capacity factor, remote operation requiring limited intervention, modular systems to facilitate repair, low maintenance
 - Minimal impact on overall cost of electricity
- Safeguardable system that meets U.S. non-proliferation objectives
 - Move away from using terminology proliferation-resistant
 - Focus on quantifiable rather than qualitative characteristics of the system
- Maximize actinide recovery to maximize resource utilization and provide potential enhancements to future high-level waste repository
- Encapsulate fission products in engineered waste forms that can be disposed in an environmentally responsible manner

Conceptual Flowsheet for Treating Used Metallic Fuel

Electrorefining Technology

- Electrorefining is primary unit operation in used fuel treatment process
 - Anodic dissolution of used fuel
 - Cathodic deposition of actinides for recycle
- Uranium electrorefining is most mature of all pyrochemical technologies
 - Process viability demonstrated through laboratory- and engineering-scale testing with simulated and irradiated fuel
 - Sustained treatment of irradiated fuel in a remote environment demonstrated during treatment of fuel from Experimental Breeder Reactor II (Mk IV and V electrorefiners)
- Advanced design developed to eliminate process inefficiencies identified during EBR II fuel treatment (Mk IV and V refiners)
 - Scalability
 - Product Recovery
 - Process efficiency

Planar electrorefiner prototype module

Dendritic U product

Next-Generation Electrorefiner

- Industrialization of technology addressed through process efficiency and scalability improvements
 - Modular approach improves scalability and throughput
 - Intermittent product removal from cathodes enhances process efficiency
 - Automated product recovery enhances throughput
 - Design allows simultaneous recovery of U and co-deposited U/TRU products

General Electric - Hitachi Nuclear Patent Application: US20130161186

Approaches to U/TRU Recovery

- Alloy-forming liquid metal cathode (e.g., cadmium)
 - Deposition potential for TRU (and lanthanides) is shifted to less cathodic values
 - Decreases separation between TRU and lanthanide metals
 - Requires subsequent TRU separation from alloy and residual salt
 - Process demonstrated at kilogram-scale with irradiated materials
 - Issues with control of dendrite formation on surface of recovery crucible
 - Materials compatibility issues
- Non-alloying solid metal cathode
 - High current density at cathode shifts cathode potential to more cathodic values as cathode current density exceeds U³⁺ mass transfer limiting current
 - Maximum separation between TRUs and lanthanides, limits lanthanide contamination of product and mitigates fuel clad chemical interactions
 - No alloy forms with the cathode material
 - Low melting U-TRU alloy makes metal residual salt separation via bottom-pour feasible
- R&D efforts focused on developing solid cathode technology for U/TRU recovery

U/TRU Co-deposition Studies

- U/TRU co-deposition studies focused on evaluation of process at the kilogram scale using uranium and TRU surrogates (lanthanides)
 - Laboratory –scale tests revealed
 - Clear plateaus at potentials consistent with thermodynamic predictions
 - Current levels proportional to relative concentrations of U, Np, and Gd
 - Understand boundary conditions for U/TRU recovery from laboratory-scale tests
- Test apparatus being used to evaluate simultaneous U deposition and U/TRU co-deposition and codeposition system performance

Conceptual Flowsheet for Treating Used Oxide Fuel

Electroreduction Technology

- Electroreduction converts used fuel oxides to base metals for treatment in electrorefiner
 - Anode process produces oxygen gas that is swept from cell
 - Cathode process yields metallic product suitable for electrorefining
 - LiCl Li₂O solvent @650°C
- Process chemistry demonstrated through tests with simulated (ANL) and irradiated LWR and fast reactor MOX fuel (INL)
- High-capacity cell studies
 - Kilogram-scale demonstrations of process yielded high current efficiency and efficient oxygen gas removal from cell
 - Reduction rates are very good; cells designed to collect fundamental data
 - Fission products have no effect on conversion process
- Process development activities now focused on anode materials testing and process monitoring

Kg-scale anode test rig

Next-Generation Electroreducer

 Design developed based on Ptanode technology but design flexibility allows incorporation of alternative anode materials

General Electric - Hitachi Nuclear Patent Application: US20120160666

Process Development Challenges and Opportunities

- Significant effort focused on back-end of flowsheet
 - Maximize actinide recovery
 - Crucial to reducing long-term radiotoxicity and heat load of high-level waste going to a geologic repository
 - Recovered actinides recycled to the treatment system
 - Recover right amount of fission products from process salt to achieve actinide product quality and minimize waste destined for repository
 - No need to produce high purity salt for recycle
 - Constitution of recovered fission products enables encapsulation in durable waste forms
 - Salt treatment processes should not add complexity or significant cost to the fuel treatment facility
- Process options identified, reviewed, and preferred options down-selected for development
 - Electrolysis
 - Actinide drawdown
 - Lanthanide drawdown
 - Two options being explored for alkali and alkaline earth elements
 - Fractional crystallization with LiCl-based salt system
 - Electrochemical ion-selective membrane with eutectic salt system (Sandia National Laboratory)

Actinide and Lanthanide Drawdown via Electrolysis

- Electrolysis can be used for recovery of actinide metals from molten salt solutions
 - Routinely used in industrial-scale production of specialty metals
 - High degree of separation of actinides from the salt
 - Recovered actinides recycled to the treatment system
 - Recovered lanthanides incorporated into a durable waste form
 - Actinide and lanthanide drawdown can be performed sequentially in the same process equipment
 - Significantly decreases the amount of the highlevel waste generated in the electrochemical treatment process without adding additional complexity
- Actinide recovery (e.g., U, Pu) demonstrated during initial feasibility experiments with earlier system

Electrolysis demonstration system

Operation Modeling of Drawdown Process

- In electrolysis, there is a <u>continuous</u> change in the composition of the salt
 - Actinide deposition potential becomes more negative as their concentration in salt decreases
 - Operating potential has to be adjusted to more negative values as process proceeds
 - Depending on the extent of separation, the values can be negative enough to deposit lanthanides along with the actinides
- Theoretical treatment of electrolysis process revealed the better the recovery of actinides, the poorer the separation between actinides and lanthanides
 - For 99.9% Am recovery, majority of lanthanides will co-deposit
 - For 65% Am recovery, almost complete separation can be achieved
 - All calculations are based on assumption of Am²⁺ in salt phase
- Better understanding of Am chemistry (Am²⁺/Am³⁺) required under <u>process relevant</u> <u>conditions</u>
- Currently determining formal electrochemical potentials for U, Np, Pu and Am under a consistent set of concentration and salt conditions
 - Results will guide selection of operating conditions for electrolysis system

Summary

Electrochemical process development is moving us towards a sustainable nuclear energy system

- Next-generation refining and reduction systems ready for evaluation
 - Electroreduction provides bridge between light water reactors and fast reactors for fuel cycle closure
 - U/TRU co-deposition system can be incorporated into electrorefiner as it becomes available
- Development and testing of salt treatment systems is occurring at laboratory- and/or engineering-scale
 - No showstoppers identified; scale-up and throughput requirements can be met for multiple fuel treatment scenarios
 - Additional thermodynamic data needed for minor actinides under process relevant conditions is being collected and will guide engineering-scale system development
 - Experimental work augmented by focused modeling activities
- Process monitoring and control technologies are integral to electrochemical process development
 - May be useful indicators for material diversion and material control and accountancy measurements

16

Pyroprocess Development Group

- J.L. Willit
- R. Blaskovitz
- T. Cruse
- J. Figueroa
- A. Hames
- T. Johnson
- M. Rose
- J. Savina
- N. Smith
- C. Snyder
- M. Tylka
- S. Wiedmeyer (Nuclear Engineering)

Acknowledgements

Government License Notice

- The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
- This work was supported by
 - U.S. Department of Energy, Office of Nuclear Energy
 - General Electric- Hitachi Nuclear Energy